J Korean Med Assoc Search

CLOSE


J Korean Med Assoc > Volume 47(2); 2004 > Article
Roh and Kim: Optical Imaging in the Field of Molecular Imaging

Abstract

Molecular imaging is leading an important role in the era of molecular medicine. Optical imaging, a rising star in the filed of molecular imaging, largely consists of fluorescent imaging and bioluminescent imaging. In the fluorescence imaging, an illuminating light excites fluorescent reporters in the living subject, and a charged coupled device (CCD) camera collects an emission light of shifted wavelength. In the bioluminescent imaging, reporter genes code for the luciferase that is responsible for fireflies' glow. After the injection of the substrate luciferin, animals carrying the luciferase gene are imaged with a super-sensitive CCD camera to pick up the small number of photons transmitted through tissues. It has been shown that well-aimed and creatively built reporters let researchers explore and answer a lot of biologically important questions in living subjects. Despite its relatively short history, optical imaging is rapidly being implemented in various clinical areas as well as research fields.

References

1. Greer LF 3rd, Szalay AA. Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 2002;17:43-74.

2. Blasberg RG. Plenary session II: Identifying biological targets and pathways for in vivo molecular imaging. First annual meeting of the society for molecular imaging 2002;USA: Boston.

3. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545-580.

4. Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Benaron DA, et al. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 1997;66:523-531.

5. Weissleder R, Mahmood U. Molecular imaging. Radiology 2001;219:316-333.

6. Lippincott-Schwartz J, Snapp E, Kenworthy A. Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2001;2:444-456.

7. Tung CH, Zeng Q, Shah K, Kim DE, Schellingerhout D, Weissleder R. In vivo imaging of beta-galactosidase activity using far red fluorescent switch. Cancer Res 2004;In press.

8. Luker GD, Luker KE, Sharma V, Pica CM, Dahlheimer JL, Piwnica-Worms D, et al. In vitro and in vivo characterization of a dual-function green fluorescent protein-HSV1-thymidine kinase reporter gene driven by the human elongation factor 1 alpha promoter. Mol Imaging 2002;1:65-73.

9. Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug Chem 2002;13:554-560.

10. Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol 2001;19:316-317.

11. Moon WK, Lin Y, O'Loughlin T, Tang Y, Kim DE, Weissleder R, Tung CH. Enhanced tumor detection using a folate receptor-targeted near-infrared fluorochrome conjugate. Bioconjug Chem 2003;14:539-545.

12. Ntziachristos V, Tung CH, Bremer C, Weissleder R. Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 2002;8:757-760.

13. Ntziachristos V, Chance B. Probing physiology and molecular function using optical imaging:applications to breast cancer. Breast Cancer Res 2001;3:41-46.

14. Tung CH, Mahmood U, Bredow S, Weissleder R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 2000;60:4953-4958.

15. Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 2001;7:743-748.

16. Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 2003;63:8122-8125.

17. Detter C, Russ D, Iffland A, Wipper S, Schurr MO, Reichart B, et al. Near-infrared fluorescence coronary angiography: a new noninvasive technology for intraoperative graft patency control. Heart Surg Forum 2002;5:364-369.

18. Shah K, Tang Y, Breakefield X, Weissleder R. Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene 2003;22:6865-6872.

19. Kim DE, Ishii K, Shah K, Weissleder R, Schellingerhout D. Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke 2004;in press.

20. Shah K, Bureau E, Tang Y, Kim DE, Weissleder R, Breakefield X. Induction of apoptosis in glioma cells by novel TRAIL-secreting neural precursor cells (NPC) and in vivo tracking of NPC migration and tumor apoptosis. 33rd annual meeting of society for neuroscience 2003;New Orleans, USA: Abstract.

21. Fujimoto JG, Bouma B, Tearney GJ, Boppart SA, Pitris C, Brezinski ME, et al. New technology for high-speed and high-resolution optical coherence tomography. Ann N Y Acad Sci 1998;838:95-107.

22. Watanabe E, Yamashita Y, Maki A, Ito Y, Koizumi H. Non-invasive functional mapping with multi-channel near infrared spectroscopic topography in humans. Neurosci Lett 1996;205:41-44.

23. Kato H, Izumiyama M, Koizumi H, Takahashi A, Itoyama Y. Near-infrared spectroscopic topography as a tool to monitor motor reorganization after hemiparetic stroke: a comparison with functional MRI. Stroke 2002;33:2032-2036.

Figure 1
jkma-47-127-g001-l.jpg
Figure 2
jkma-47-127-g002-l.jpg


ABOUT
ARTICLE CATEGORY

Browse all articles >

ARCHIVES
FOR CONTRIBUTORS
Editorial Office
37 Ichon-ro 46-gil, Yongsan-gu, Seoul
Tel: +82-2-6350-6562    Fax: +82-2-792-5208    E-mail: jkmamaster@gmail.com                

Copyright © 2024 by Korean Medical Association.

Developed in M2PI

Close layer
prev next