Contrast Echocardiography

Article information

J Korean Med Assoc. 2003;46(11):987-999
Publication date (electronic) : 2003 November 30
doi : https://doi.org/10.5124/jkma.2003.46.11.987
Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Korea. sejoong@yumc.yonsei.ac.kr

Abstract

Contrast echocardiography is an important technique that can be used to examine the cardiac cavity, vascular structure, intracardiac shunt, and myocardial microcirculation. It uses gas-filled microbubbles and various imaging techniques. The properties of microbubbles and their interaction with ultrasound are important in ultrasound-enhanced contrast imaging. This article will describe microbubble physics and new ultrasound techniques that are necessary to understand the basics of contrast echocardiography. The utility of contrast echocardiography in various clinical scenarios will be also described.

References

1. Oh JK, Seward JB, Tajik AJ. Contrast echocardiography. The Echo Manual 2nd edth ed. 245–249.
2. de Jong N. In : de Jong N, ed. Higher harmonics of vibrating gas-filled microspheres. Acoustic Properties of Ultrasound Contrast Agents 1993. Woerden, Germany: Zuidam and Zonen bv; 61–78.
3. Burns PN, Powers JE, Simpson DH, Uhlendorf V, Fritzsche T. Harmonic imaging : principles and preliminary results. Clin Radiol 1996. 51Suppl I. 50–55.
4. de Jong N, Hoff L, Skotland T, Bom N. Absorption and scatter of encapsulated gas filled microspheres : theoretical considerations and some measurements. Ultrasonics 1992. 30(2)95–103.
5. de Jong N, Hoff L. Ultrasound scattering properties of Albunex microspheres. Ultrasonics 1993. 31175–181.
6. Wei K, Skyba DM, Firschke C, Jayaweera AR, Lindner JR, Kaul S. Interactions between microbubbles and ultrasound : in vitro and in vivo observations. J Am Coll Cardiol 1997. 29(5)1081–1088.
7. Frinking PJA, de Jong N, Cespedes EI. Scattering properties of encapsulated gas bubbles at high ultrasound pressures. J Acoust Soc Am 1999. 1051989–1996.
8. Shohet RV, Chen S, Zhou YT, Wang Z, Meidell RS, Grayburn PA, et al. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 2000. 101(22)2554–2556.
9. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 1998. 97(5)473–483.
10. Simpson D, Chin C, Burns P. Pulse inversion Doppler:A new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans Ultrason Ferr Freq Con 1999. 46372–382.
11. Becher H, Burns PN. Handbook of contrast echocardiography 2000. Berlin: Springer;
12. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol 1968. 3356–366.
13. Porter TR, Xie F. Visually discernible myocardial echocardiographic contrast after intravenous injection of sonicated dextrose albumin microbubbles containing high molecular weight, less soluble gases. J Am Coll Cardiol 1995. 25509–515.
14. Grayburn PA. Current and future contrast agents. Echocardiography 2002. 19259–265.
15. Hagler DJ, Currie PJ, Seward JB, Tajik AJ, Mair DD, Ritter DG. Echocardiographic contrast enhancement of poor or weak continuous wave Doppler signals. Echocardiography 1987. 463–67.
16. Crouse LJ, Cheirif J, Hanly DE, Kisslo JA, Labovitz AJ, Smith MD, et al. Opacification and border delineation improvement in patients with suboptimal endocardial border definition in routine echocardiography : results of the Phase III Albunex Multicenter Trial. J Am Coll Cardiol 1993. 22(5)1494–1500.
17. Schroder K, Agrawal R, Voller H, Schlief R, Schroder R. Improvement of endocardial border delineation in suboptimal stress-echocardiograms using the new left heart contrast agent SH U 508 A. Int J Card Imaging 1994. 1045–51.
18. Kassab GS, Lin DH, Fung YC. Morphometry of pig coronary venous system. Am J Physiol 1994. 267(6 Pt 2)H2100–H2113.
19. Kassab GS, Rider CA, Tang NJ, Fung YC. Morphometry of pig coronary arterial trees. Am J Physiol 1993. 265(1 Pt 2)H350–H365.
20. Kassab GS, Fung YC. Topology and dimensions of pig coronary capillary network. Am J Physiol 1994. 267(1 Pt 2)H319–H325.
21. Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 1974. 34(1)48–55.
22. Wu X, Ewert DL, Liu Y, Rittman EL. In vivo relation of intramyocardial blood volume to myocardial perfusion:evidence supporting microvascular site for autoregulation. Circulation 1992. 85730–737.
23. Keller MW, Segal SS, Kaul S, Duling B. The behavior of sonicated albumin microbubbles within the microcirculation:a basis for their use during myocardial contrast echocardiography. Circ Res 1989. 65(2)458–467.
24. Skyba DM, Camarano G, Goodman NC, Price RJ, Skalak TC, Kaul S. Hemodynamic characteristics, myocardial kinetics and microvascular rheology of FS-069, a second-generation echocardiographic contrast agent capable of producing myocardial opacification from a venous injection. J Am Coll Cardiol 1996. 28(5)1292–1300.
25. Lindner JR, Song J, Jayaweera AR, Sklenar J, Kaul S. Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. J Am Soc Echocardiogr 2002. 15(5)396–403.
26. Jayaweera AR, Edwards N, Glasheen WP, Villanueva FS, Abbott RD, Kaul S. In vivo myocardial kinetics of air-filled albumin microbubbles during myocardial contrast echocardiography. Comparison with radiolabeled red blood cells. Circ Res 1994. 74(6)1157–1165.
27. Kemper AJ, O'Boyle JE, Cohen CA, Taylor A, Parisi AF. Hydrogen peroxide contrast echocardiography : quantification in vivo of myocardial risk area during coronary occlusion and the necrotic area remaining after myocardial reperfusion. Circulation 1984. 70309–317.
28. Villanueva FS, Glasheen WP, Sklenar J, Kaul S. Assessment of risk area during coronary occlusion and infarct size after reperfusion with myocardial contrast echocardiography using left and right atrial injections of contrast. Circulation 1993. 88596–604.
29. Firschke C, Camarano G, Lindner JR, Wei K, Goodman NC, Kaul S. Myocardial perfusion imaging in the setting of coronary artery stenosis and acute myocardial infarction using venous injection of FS-069, a second-generation echocardiographic contrast agent. Circulation 1997. 96959–967.
30. Ragosta M, Camarano GP, Kaul S, Powers E, Sarembock IJ, Gimple LW. Microvascular integrity indicates myocellular viability in patients with recent myocardial infarction:new insights using myocardial contrast echocardiography. Circulation 1994. 892562–2569.
31. Ito H, Tomooka T, Sakai N, Yu H, Higashino Y, Minamino T, et al. Lack of myocardial perfusion immediately after successful thrombolysis:a predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 1992. 851699–1705.
32. Ito H, Tomooka T, Sakai N, Yu H, Higashino Y, Minamino T, et al. Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 1992. 85(5)1699–1705.
33. Lindner JR, Skyba DM, Goodman NC, Jayaweera AR, Kaul S. Changes in myocardial blood volume with graded coronary stenosis : an experimental evaluation using myocardial contrast echocardiography. Am J Physiol 1997. 272H567–H575.
34. Kaul S, Senior R, Dittrich H, Raval U, Khattar R, Lahiri A. Detection of coronary artery disease using myocardial contrast echocardiography : comparison with 99mTc-sestamibi single photon emission computed tomography. Circulation 1997. 96785–792.
35. Lindner JR, Skyba DM, Goodman NC, Jayaweera AR, Kaul S. Changes in myocardial blood volume with graded coronary stenosis : an experimental evaluation using myocardial contrast echocardiography. Am J Physiol 1997. 272H567–H575.
36. Lindner JR, Dayton PA, Coggins MP, Ley K, Song J, Kaul S, et al. Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation 2000. 102531–538.
37. Lindner JR, Song J, Xu F, Klibanov AL, Singbartl K, Kaul S, et al. Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation 2000. 1022745–2750.
38. Skyba DM, Price RJ, Linka AZ, Skalak TC, Kaul S. Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation 1998. 98290–293.
39. Price RJ, Skyba DM, Kaul S, Skalak TC. Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 1998. 981264–1267.
40. Mukherjee D, Wong J, Griffin B, Ellis SG, Porter T, Thomas JD, et al. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration. J Am Coll Cardiol 2000. 351678–1686.
41. Shohet RV, Chen S, Zhou YT, Wang Z, Meidell RS, Grayburn PA, et al. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 2000. 1012554–2556.
42. Birnbaum Y, Luo H, Nagai T, Fishbein MC, Peterson TM, Siegel RJ, et al. Noninvasive in vivo clot dissolution without a thrombolytic drug:recanalization of thrombosed iliofemoral arteries by transcutaneous ultrasound combined with intravenous infusion of microbubbles. Circulation 1998. 97130–134.

Article information Continued

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Table 1

Table 1